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Abstract

The focus of this paper is the description and identification of the anisotropic microstructure of porous media. To

begin, a general discussion on fabric descriptors employing linear intercept measurements is provided and a new fabric

measure, referred to as areal pore size distribution, is proposed. Subsequently, the issue of the identification of fabric

descriptors is addressed and fabric detection algorithms, incorporating 3D computed tomography images, are des-

cribed. Finally, examples of identification of the microstructure of trabecular bone samples are provided and the

performance of different fabric descriptors is assessed.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Porous materials are often anisotropic. The anisotropy stems primarily from the arrangement of porous

microstructure and manifests itself in the directional dependence of both mechanical characteristics and

flow properties. In a number of naturally occurring and manufactured materials (sedimentary rocks and
soils, reinforced composites, etc.) the principal material directions are known a priori. In this case, the

formulation of the problem may be simplified by employing structure-orientation tensors, which represent

the dyadic products of the material triad (e.g., Pietruszczak and Mroz, 2001). On the other hand however,

materials with complex architecture (e.g., trabecular bone) or those experiencing deformation induced

anisotropy require, in general, some explicit measures of fabric. The latter issue, i.e., that of quantification

of fabric, is the main focus of this paper.

Fabric detection algorithms usually employ the basic principles of stereology. Typically, three-dimen-

sional (3D) parameters of interest are estimated by sampling in a statistical sense with two-dimensional
(2D) or one-dimensional (1D) geometric entities. The procedures incorporating stereologic principles have
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been widely used in the area of bone mechanics. For example, Whitehouse (1974) developed stereological

measurement techniques incorporating lineal probes for describing the anisotropy of trabecular bone ar-

chitecture on 2D planar sections. Whitehouse defined the �mean intercept length� (MIL) at some arbitrarily

chosen direction as the relative bone area divided by the total projected boundary perimeter per unit area.
When MIL data is plotted as a radius from the origin at the angle of measurement, a curve remarkably

close to an ellipse is generated. A departure from isotropy is characterized by the ratio of the ellipse semi-

axes. Harrigan and Mann (1984) extended this concept to 3D by taking MIL measurements on three

mutually perpendicular planes of cubic bone specimens and introduced a tensor-valued measure of bone

architecture called the �mean intercept length tensor�. With the advent of 3D imaging techniques such as

microcomputed tomography (lCT) (Sasov, 1987; Sasov and Van Dyck, 1998) and high resolution magnetic

resonance imaging (MRI) (Chung et al., 1995), the fabric of a bone sample may be readily detected without

resorting to model-based approaches (e.g., Odgaard et al., 1990) or extrapolating 3D information from a
restricted set of 2D images (e.g., Harrigan and Mann, 1984; Kanatani, 1985a).

The main component of this paper is the identification and quantification of the fabric of porous ma-

terials. Directionally dependent measurements are obtained by probing binarized lCT images with arrays

of parallel test lines. In Section 2, several currently used measures of fabric are defined and a new fabric

descriptor referred to as areal pore size distribution is introduced. Subsequently, a brief discussion of the

mathematical representation of directional data is provided based on the work of Kanatani (1984) and

extended in light of recent developments by Pietruszczak and Mroz (2001). In Section 3, algorithms for the

identification of various measures of fabric are described in a pseudocode. A simple and efficient compu-
tational scheme, known as the generalized spiral points method (Saff and Kuijlaars, 1997) is employed for

the generation of isotropically and uniformly distributed test probes. Section 4 addresses the problems of

quantification, interpretation and visual presentation of microstructural information within the context of a

practical example: fabric analysis of trabecular bone images. In particular, the performance of different

fabric descriptors is examined and the results compared in terms of specification of eigenvalues and the

degree of anisotropy.

2. Fabric descriptors for porous materials

The standard procedures based on stereology incorporate unbiased test probes to estimate structural

parameters. Both high and low order dimensional probes, such as points, lines and planes, can be used to

measure various quantities of interest, including length, surface area, volume, etc. Lineal probes are
particularly well suited for deriving orientation dependent information since they can be counted,

incorporate the additional components of direction and length, and are simple to manipulate geometri-

cally. For this reason, those descriptors which rely on parallel arrays of lineal probes have been included in

this work.

In general, each fabric descriptor is based on sums and numbers of lineal intercept quantities. The probes

are usually equally spaced and are rotated from a standard alignment configuration into a prescribed

sampling direction mi. Consider the following basic measurement quantities derived from an array of

parallel test lines. Let LðmiÞ be the total length of test lines. Depending on the surface representation of the
volume of interest, Lðmi) may be constant (i.e., sphere) or orientation-dependent (i.e., prism, cylinder). An

intercept is an isolated line segment arising from the intersection of a test line with the boundary of the

phase of interest and lying within this phase. Then
P

IðmiÞ represents the sum of all intercept lengths while

NðmiÞ corresponds to their number.

In this paper the performance of some fabric measures currently used in the area of biomechanics

(cf. Odgaard, 1997a) is assessed. The descriptors included in the evaluation process are listed below.
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• Mean intercept length (MIL) was originally introduced in the article by Whitehouse (1974), in which a

formula was proposed for calculating the mean width of trabeculae as seen in 2D scanning electron

microscope micrographs. The definition in a 3D context may be expressed as

MILðmiÞ ¼ lvðmiÞ
LðmiÞ
NðmiÞ

¼
P

IðmiÞ
LðmiÞ

� �
LðmiÞ
NðmiÞ

� �
¼
P

IðmiÞ
NðmiÞ

ð1Þ

where lv is the lineal fraction of voids in the direction mi. It is noted that lv is an orientation independent

quantity, so that the effect of anisotropy is embedded in the second term, L=N . Thus, lv can in fact be

excluded from definition (1) (cf. Odgaard, 1997a). The reason for retaining this parameter here is two-

fold. First, the mechanical characteristics of porous media are strongly affected by the volume fraction of

voids, so that the information regarding this quantity is, in general, very useful. Second, the represen-

tation employing
P

I is convenient as all the other measures discussed below are defined in terms of the

same fundamental quantity.

• Star length distribution (SLD) was introduced by Smit et al. (1998), who presented a volume-based
method for the quantification of anisotropy in porous media. SLD defines the mean length of an object

in a given direction at a random material point. The definition using lineal probes is

SLDðmiÞ ¼
P

I2ðmiÞP
IðmiÞ

ð2Þ

In the above formula, the intercepts are weighted by their length. As a result, the measurements of SLD
are more sensitive to the detection of microstructural orientation than those involving MIL.

• Star volume distribution (SVD) was originally proposed by Cruz-Orive et al. (1992) and is conceptually

related to the volume orientation descriptor (VO) introduced by Odgaard et al. (1990). This measure is

similar to SLD with the exception that intercepts are weighted more heavily. A point grid algorithm

for calculating SVD was recently presented by Odgaard et al. (1997b). Here, a regularly spaced point

grid is generated over the sampling domain. The subset of points that fall within the phase of interest

is retained for scanning. For each member of a set of uniformly distributed orientations, a test line is

generated at every sampling point and an intersection with the phase of interest is determined. Averaging
the cubed intercept lengths over all of the points yields the mean volume as a function of orientation. In

this case, the definition of SVD becomes

SVDðmiÞ ¼
p
3

1

M

XM
k¼1

I3k ðmiÞ ð3Þ

where M specifies the number of test points. Alternatively, SVD can be calculated using an array of

parallel test lines (Smit et al., 1998) according to

SVDðmiÞ ¼
p
3

P
I4ðmiÞP
IðmiÞ

ð4Þ

A new fabric measure proposed here is referred to as areal pore size distribution (APS). To define this

measure, a representative volume of the material is considered in the form of a spherical sampling domain

of radius R. A Cartesian coordinate system is then fixed at the centroid of this sphere. The identification

process involves cutting the sphere with a plane of unit normal mi and placing on it a set of uniformly

distributed parallel lines aligned in an arbitrary direction, xi, so that mi is orthogonal to xi. The areal ‘‘pore

size’’ is then defined as

qAðmiÞ ¼
1

2p

Z
CðmiÞ

gðxiÞdC; gðxiÞ ¼
P

IðxiÞ
NðxiÞ

ð5Þ
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where dC is the differential angle measured in this plane and gðxiÞ is symmetric with respect to the origin;

i.e., gðxiÞ ¼ gð�xiÞ. The APS descriptor is now obtained by averaging qA along the direction mi, i.e.,

APSðmiÞ ¼
1

2R

Z R

�R
qAðmiÞdL ð6Þ

where dL is the differential distance measured along mi.
In the implementation of a line algorithm, the integration is replaced by a discrete summation. Consider

a set of equally spaced, parallel test lines on any one of a set of M equally spaced, parallel planes. The test

lines are rotated in-plane k times around a pole defined by mi. Thus, in terms of the discrete quantities I and
N :

APSðmiÞ ¼
1

M

XM
j¼1

qðjÞA ðmiÞ; qðjÞA ðmiÞ ¼
1

k

X
k

P
IðxðkÞi Þ

NðxðkÞi Þ
; xðkÞi � mi ¼ 0 ð7Þ

In order to increase the accuracy of the numerical integration, viz. Eq. (7), it is convenient to assume that

the test line density remains constant for all M planes. Therefore, in the case of a spherical sampling do-

main, the test line spacing within each planar disc perpendicular to the sampling direction is different. The

closest spacing between test lines occurs on discs near the poles, whereas the farthest spacing occurs at the
equatorial plane.

The above fabric measure is particularly convenient for describing the hydraulic properties of porous

media (e.g., permeability characteristics). It should be emphasized that a detailed geometric representation

of the pore space is impossible and the APS descriptor is introduced here in a statistical sense. The areal

‘‘pore size’’ qA is defined herein as an in-plane orientation average of gðxiÞ which, in turn, represents the

ratio of the area of voids to the projected boundary perimeter. Such a measure may be implemented in the

context of a network model of porous structure, whereby the pore space is visualized as an arrangement of

capillary tubes whose diameter vary according to the spatial distribution of the APS descriptor. In this way,
an explicit correlation between the hydraulic conductivity tensor and that derived on the basis of APS

measurements may be established.

In general, the fabric descriptors listed here, i.e., MIL, SLD and SVD, have been chosen on a rather

selective basis. Several other measures, such as mean free path (Underwood, 1970), areal porosity distri-

bution (Pietruszczak et al., 1999), etc., have also been used in the area of biomechanics. In addition, other

measures of microstructure have been developed in the field of geomechanics, which include the distri-

bution of interparticle contacts (Oda, 1972), distribution of microcracks in brittle materials (Kanatani,

1985b), etc. As mentioned earlier, a comprehensive review of existing measures is not a primary objective
here. The focus of this work is on the algorithmic aspects of the identification procedure, which can be

adequately illustrated in the context of the descriptors presented above.

Given the definitions of fabric descriptors, Eqs. (1)–(7), an important issue now is that of the mathe-

matical representation of the distribution of fabric data. In general, the distribution function may be as-

sumed in the form suggested by Kanatani (1984)

f ðmiÞ ¼ Cð1þ Dijmimj þ Dijklmimjmkml þ � � �Þ ð8Þ
where C represents the mean value of the descriptor while D�s are symmetric, traceless even ranked tensors

which describe the directional variation or deviation from the mean. The simplest approximation to Eq. (8)
is that in which only the second-order tensor is retained, i.e.,

f ðmiÞ ¼ Cð1þ DijmimjÞ; Dkk ¼ 0; Dij ¼ Dji; mkmk ¼ 1 ð9Þ
An alternative to this formulation is

f ðmiÞ ¼ 3CAijmimj; Akk ¼ 1; Aij ¼ Aji ð10Þ
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where Aij, which may be referred to as a normalized �fabric tensor�, is defined as

Aij ¼
1

3
ðdij þ DijÞ ð11Þ

For a smooth orthogonal anisotropy, it is sufficient to retain the representation (9) or (10). The inter-
pretation is that Dij vanishes for an isotropic distribution. For non-zero Dij, the eigenvectors, e

ðkÞ
i , define the

symmetry axes while the corresponding eigenvalues, kk, are the ratios of the distribution to the isotropic

distribution along these axes, i.e.,

f eðkÞi
� �

¼ Cð1þ kkÞ )
f eðkÞi
� �
C

/ kk ð12Þ

In geometric terms, the principal values of Dij define the semi-axes of an ellipsoidal shape. If Dij vanishes,

the distribution function, plotted as a radial vector, defines a sphere with radius C.
The distribution function retaining the fourth-order tensor has the form

f ðmiÞ ¼ Cð1þ Dijmimj þ DijklmimjmkmlÞ
Dkk ¼ 0; Dij ¼ Dji; mkmk ¼ 1;

Dijkl ¼ Djikl ¼ Dklij ¼ Dlkij; Dijij ¼ 0

ð13Þ

With this approximation, higher material symmetries are possible, as noted by Zysset and Curnier (1995).

Most naturally occurring as well as manufactured porous materials exhibit either transverse isotropy

(e.g., sedimentary rocks, soils, cortical bone, etc.) or, in some instances, orthotropy (e.g., structural ma-

sonry, trabecular bone). Therefore, representation (9) may, in general, be adequate. However, in order to
attain a higher degree of accuracy in fitting measurement data, the approximation (9) can be extended by

incorporating dyadic products of the second-order tensor (Pietruszczak and Mroz, 2001). In this case the

modified nth-order form is

f ðmiÞ ¼ C0ð1þ Dijmimj þ C1ðDijmimjÞ2 þ � � � þ Cn�1ðDijmimjÞnÞ

¼ C0 1þ Dijmimj þ
Xn
k¼2

Ck�1ðDijmimjÞk
 !

ð14Þ

The main advantages of this representation are that orthotropic symmetry is retained, a simple geometric

interpretation is preserved, and the implementation within a mechanical framework is less complex. It
should be noted that, in the expression above, the constant C0 represents the value of f ðmiÞ in the direction

of the space diagonal, i.e., mi ¼ f1; 1; 1g=
p
3, and it does not, in general, correspond to the mean value.

3. On identification of fabric measures from lCT images

The goal of this section is to outline two algorithms that compute the three basic quantities: NðmiÞ;P
IðmiÞ and LðmiÞ, from which various descriptor measurements are calculated. The first algorithm is based

on an isotropic line array definition and generates MIL (Eq. (1)), SLD (Eq. (2)) and SVD (Eq. (4)) mea-

surements. The second algorithm is based on a non-uniform line array specification and provides APS

(Eq. (7)) measurements.

The basic procedure in both cases begins with a specification of the geometry of the sampling domain, or

volume of interest (VOI), symbolized by XS (e.g., a sphere, cylinder, or prism). A �global� control volume,
XG, is then generated which is the circumsphere that encloses XS. Next, a set of points is defined on the

equatorial plane of XG in a manner that depends on whether a uniform or non-uniform sampling grid is
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required. In the case of the former, the points define an array of isotropically spaced, parallel test lines. In

the case of a non-uniform grid, a set of equally spaced parallel planes with unit normal mi is defined such

that the test line density increases on planes nearer to the poles of XG. Fig. 1 shows examples of both

uniform and non-uniform grids.

For each sampling orientation, the line segments arising from the intersection of the test lines with XS are
scanned in a discrete manner to derive the basic descriptor quantities. To scan along a test line segment, a

voxel marching scheme is employed (see, for example, Cohen, 1994). Given the starting position p0i of a line

segment on the boundary of XS and the sampling orientation, the test line is scanned incrementally and

consecutive voxels are stored (i.e., position and phase classification) until the end point on the boundary is

reached

pki ¼ roundðp0i þ kmiÞ ^ pki 2 XS; mi ¼ mi=maxðfjm1j; jm2j; jm3jgÞ ð15Þ

The �round� function converts Cartesian coordinates of the kth voxel to integer indices. Once identified, this

temporary set of voxels, say Q, is scanned for intercepts.

A heuristic procedure known as pattern matching has been developed to minimize errors in intercept
identification that arise from the discrete representation of both the test lines and the surface of the phase of

interest within an image (cf. Kuo and Carter, 1991). A pair of kernels, each containing three classification

elements, is superimposed over the data set Q to identify the origins and terminations of intercepts. Fig. 2a

and 2b show the location of intercepts using this approach while Fig. 2c shows the rejection of a false

intercept. Here, a one classifies a member of the phase of interest. An intercept length is defined as the

midpoint location between voxels wherein a phase transition occurs. Once complete, sums of intercept

quantities are updated for further processing.

The intercept identification and storage process is performed for all test line segments under a given
alignment configuration. Descriptor measurements are calculated from ratios of the sums of basic intercept

quantities and are then archived for post-processing. The set of test line segments is redefined for each

alignment configuration.

Figs. 3 and 4 present a pseudocode description of the uniform and non-uniform line array algorithms,

respectively. Here, a capital letter signifies a set of unique scalar elements while a bolded capital letter

identifies a set of vectors. ; corresponds to the empty set and is used to initialize a set of elements. The

union symbol, �[�, serves as an operator to add elements to a given set. The � � notation assigns a left-hand

side variable the result of a right-hand side expression. A capital N with a subscript corresponding to a set
identifier means �number of elements in� the set. Given the preceding definitions:

Fig. 1. Regularly (a) and irregularly (b) spaced grid points (test lines not shown).
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• S  ; means initialize the set of scalars, S, to the empty set.

• s2  s1  0 is a compound assignment statement initializing the scalars s1 and s2 to zero.

• S  S [ fs1; s2g means add elements s1 and s2 to set S.
• NS is the number of elements in the set S.

Fig. 2. Pattern matching examples: identification of intercepts (a), (b) and detection of a false intercept or spur i.e., I ¼ 0 (c).

Fig. 3. A uniform line array algorithm to generate MIL, SLD and SVD measurements.
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Since the primary objective of the algorithms is to obtain a distribution of quantities being measured, or
of quantities derived from them, the sampling orientations themselves are of no particular interest and

should not influence the results. However, a uniform distribution of sampling directions is required for

obtaining a set of descriptor measurements that will be subjected to the application of a least squares fitting

procedure. The generation of a sequence of uniformly distributed directions in 3D, or points on a unit

sphere, is non-trivial and in general, problem specific. The notion of uniformity can be realized, for ex-

ample, by sampling with a number of random orientations. However, it is desirable to incorporate a

computationally efficient and reproducible scheme, as in the manner of certain quadrature formulae, yet

Fig. 4. A nonuniform line array algorithm to generate APS measurements.

Fig. 5. 150 spiral points on a unit sphere.
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without restriction on the number of sample points. In this paper, a simple, explicit construction scheme

known as the �generalized spiral points method� has been adopted. The method is straightforward to im-

plement and places no restriction on the number of points. The reader is referred to Rakhmanov et al.

(1994) for theoretical details and to Saff and Kuijlaars (1997) for the specifics of the implementation. As an
example, Fig. 5 shows the distribution of 150 points on the unit sphere obtained using this approach.

Finally, it should be mentioned that the accuracy of the algorithms described in this section has been

tested in the context of simple structures composed of a spherical/ellipsoidal inclusion embedded within a

larger sampling domain. For all descriptors considered here, i.e., MIL, SLD, SVD and APS, the results

were consistent with the closed-form solutions, which can easily be established for these elementary geo-

metric entities (cf. Smit et al., 1998).

4. Fabric analysis for trabecular bone images

Two lCT images of cylindrical bone biopsies from the femoral neck were obtained in binarized form

from Dr. Ralph Mueller (Orthopaedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center).

Table 1 summarizes the general image characteristics. The abbreviations BVF and DA refer to the bone
volume fraction (BVF ¼ 1� l̂lV) and the degree of anisotropy, respectively. Here, the degree of anisotropy

is defined as the ratio of the maximum to minimum MIL eigenvalue, where the MIL tensor is defined as in

Harrigan and Mann (1984).

For the purpose of verification, the values of BVF and DA, as provided by Dr. Mueller, were reassessed

using the procedure outlined in Fig. 3. In particular, the MIL measurements were obtained with the uni-

form line array algorithm using a spherical VOI with RG ¼ 135 voxels, a grid spacing of 10 voxels, and the

pattern matching algorithm turned off. BVF was determined via a direct voxel counting algorithm within

the same spherical volume. The results (in brackets) are in reasonable agreement with the original values
provided in Table 1.

Figs. 6 and 7 show the boundary projection of the spherical volume of interest overlaid on three average

intensity projection images of the femur_1 and femur_2 samples, respectively. The corresponding volume

renderings were generated by ray casting along the direction normal to the plane starting at the center of the

VOI. These images clearly illustrate that for similar porosity values, the underlying structural arrangement

of trabeculae can be significantly different. The femur_1 sample consists of a heterogeneous arrangement of

both rod and small plate structures while the femur_2 sample exhibits larger plate structures with fewer

rods.
To select a suitable grid spacing, both images were subjected to a series of preliminary scans to deter-

mine the mean BVF relative percent error over a range of grid spacings. The true BVF is determined by

counting the number of phase of interest voxels and dividing by the total number of voxels contained within

the VOI. The line grid algorithm was used to scan the images with 50 spiral points, pattern matching turned

off and grid spacings of d ¼ f5; 10; 15; . . . ; 30g voxels. Fig. 8 shows the mean relative percent error in BVF

Table 1

General image characteristics

Identification Femur_1 Femur_2

BVF 18% (17.7%) 18% (17.5%)

DA 1.25 (1.26) 1.47 (1.52)

Image dimensions 336� 336� 310

Voxel size (isotropic) 28 lm
Sample dimensions Diameter �8.3 mm, height �8.7 mm
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over the range of grid spacings for both images. Based on these results, a grid spacing of 10 voxels was

adopted for all of the subsequent descriptor measurements.

In what follows, the results of the analysis of the femur_1 image are presented using the fabric des-
criptors identified in Section 2. In all cases, 100 spiral points were used to scan the solid (bone) phase. The

measurement data was fit to Eq. (14) with orders of fit n 2 f1; 2; . . . ; 5g, using an iteratively re-weighted

least squares procedure (e.g., Myers, 1990) combined with a Levenberg–Marquardt solution scheme for the

case when n > 1. For each descriptor, the v2 merit function was evaluated. Values were subsequently

normalized with respect to the maximum v2 value, usually obtained with n ¼ 1, for comparative evalua-

tions.

Fig. 6. VOI overlaid on three average intensity projection images of femur_1.
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Fig. 9 presents plots of order of fit versus normalized v2 for each descriptor. Series distinguished by �pm
on� or �pm off� refer to measurements obtained with and without pattern matching, respectively. For most

descriptors, increasing the order of fit beyond two does not lead to a substantial improvement in the fit
itself. In the case of MIL, pattern matching significantly affects the measurement distribution and in turn

the required order of fit to capture fluctuations in the data. On the other hand, for APS, pattern matching

has less of an influence on the distribution of data (primarily due to the averaging of measurements around

the main sampling direction), and the improvement in fit is not significant for higher order approximations.

Fig. 10 presents a series of best fit approximations, based on Eq. (14), versus measured values of SLD.

The first and second-order distribution functions have been evaluated in 10� increments within each of the

three principal material planes. It should be noted that the orientations associated with the discrete

Fig. 7. VOI overlaid on three average intensity projection images of femur_2.
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measurement points are not the same for n ¼ 1 and n ¼ 2, since the detected principal triad changes slightly

for different orders of fit. It is evident from Fig. 10 that a noticeable improvement in fit is obtained for

n ¼ 2. In Fig. 11, similar results are presented for SVD. Here, it is apparent that there is a considerable

amount of fluctuation in the measurements, so that a higher order fit is necessary to capture the general

trends in the distribution of data.

To provide a geometric representation of different fabric descriptors, a visualization scheme advocated
by Westin et al. (1999) has been adopted. According to this approach, a symmetric second-order tensor can

be represented as an object which is a combination of a line, a disk and a sphere. The line segment describes

the major principal direction of the tensor and its length is proportional to the largest eigenvalue. The disk

describes the plane spanned by the eigenvectors corresponding to the two largest eigenvalues. The sphere

has a radius proportional to the smallest eigenvalue.

The tensor Aij, Eq. (11), can be decomposed into a sum of components in the tensor basis which is a

combination of the dyadic products of the principal triad

Aij ¼ ðk1 � k2ÞAl
ij þ ðk2 � k3ÞAp

ij þ k3As
ij ð16Þ

where

Al
ij ¼ eð1Þi eð1Þj ; Ap

ij ¼ eð1Þi eð1Þj þ eð2Þi eð2Þj ; As
ij ¼ eð1Þi eð1Þj þ eð2Þi eð2Þj þ eð3Þi eð3Þj ð17Þ

where ei�s and k�s are the eigenvectors and eigenvalues of Aij, respectively, and the superscripts l, p and s

stand for �line�, �plane� and �sphere�, respectively.
A normalized set of tensor basis coordinates can be defined as:

cl ¼
k1 � k2

k1

; cp ¼
k2 � k3

k1

; cs ¼
k3

k1

cl þ cp þ cs ¼ 1 ^ jk1jP jk2jP jk3j
ð18Þ

so that the degree of ansiotropy can be measured as the deviation from the spherical (isotropic) case;

Fig. 8. Grid spacing versus mean relative percent error in BVF for femur_1 and femur_2 images.
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DA ¼ 1� cs ¼ 1� k3

k1

ð19Þ

with magnitude dependent upon the descriptor.

An additional series of plots of order of fit versus the tensor basis coordinates cs, cp and cl, is presented in

Fig. 12 for the line array descriptors evaluated with pattern matching on. For orders of fit greater than one

the response is generally smooth, indicating that a second-order fit sufficiently captures the anisotropy

information. The sample is strongly anisotropic if evaluated by SVD, while a weaker form of anisotropy is

detected by APS, MIL and SLD descriptors. It should be noted that interpretation of the anisotropy in-
formation by means of tensor basis coordinates (i.e., Eq. (18)) or by DA (i.e., Eq. (19)) is only tentative in

nature. The correlation with mechanical properties remains to be ascertained by a comprehensive experi-

mental investigation, which is beyond the scope of the present research.

Fig. 13 presents the geometric representation of the respective fabric descriptors. Here, the three com-

ponent objects are plotted as ellipsoids with semi-axes scaled to a maximum of 1. Thus, the length of the

line segment is 1, the radius of the disk is k2=k1, whereas the radius is the sphere is k3=k1. Surface shading

has been employed to enhance the contrast between geometric entities. The composite shapes provide an

immediate visual interpretation of the underlying symmetry via the relative magnitudes of the normalized
principal descriptor values. Principal fabric triads and the orientation of the image frame of reference are
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Fig. 9. Order of fit, n, versus normalized v2 for various fabric descriptors; femur_1 image.
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Fig. 10. Best fit approximations �–� versus measured values ��� of SLD; femur_1 image, principal plane view.
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Fig. 11. Best fit approximations �–� versus measured values ��� of SVD; femur_1 image, principal plane view.
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also shown. The symmetry characterization is visually apparent with SVD displaying a strong anisotropy,

as indicated by the absence of a spherical component, while the other descriptors indicate varying degrees

of anisotropy.

A comparison of principal material triads in Fig. 13 reveals that MIL, SLD and SVD detect approxi-

mately the same orientation while APS, due to its definition, presents a similar configuration but in a

different order; i.e., direction 3 is the same as direction 1 identified by the other descriptors.

The sensitivity of orientation detection to the order of fit is examined in Fig. 14. Here, the principal

fabric orientations are plotted in angular coordinates, h and u, for different orders of fit relative to the
image frame of reference. The plots reveal that the detection of orientation is relatively stable for n > 1,

which is consistent with the results shown in Fig. 12.

The subsequent Figs. 15–17 present the results for the femur_2 image. All descriptors were identified

using the line array algorithms with the following initial parameters: 100 spiral points, d ¼ 10 voxels and

the pattern matching algorithm employed.

Trends in order of fit versus normalized v2 were similar to those observed for the femur_1 image (Fig. 8)

and, therefore, are not presented here. Fig. 15a–d show the tensor basis coordinates, cl, cp and cs, versus
order of fit for the various descriptors. The APS and MIL descriptors (Fig. 15a and b) provide a smooth

Fig. 12. Order of fit, n, versus tensor basis coordinates for various fabric descriptors; femur_1 image.
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response for n > 1, indicating that a second-order fit is sufficient. A relatively stable response is obtained

with n > 2 in the case of SLD (Fig. 15c), with the exception of the data corresponding to n ¼ 4. The results

for SVD presented in Fig. 15d are erratic for orders of fit n < 4.

The basic anisotropy information is presented next in a series of composite plots, shown in Fig. 16a–d.

The symmetry results are qualitatively similar to those obtained with the femur_1 image. In particular, the

detected degree of anisotropy follows a similar trend: APS < MIL < SLD < SVD. Again, the detected

principal triads, also shown, appear to be in reasonable agreement between descriptors.
Finally, the detected orientation triad is quantitatively assessed under different orders of fit. Fig. 17a–c

show the principal fabric orientations plotted in angular coordinates for n 2 f1; 2; . . . ; 5g. The primary and

Fig. 13. Geometric representation of different fabric descriptors; femur_1 image, n ¼ 2.
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tertiary directions have been swapped in the case of APS for comparative evaluation with the other

descriptors. In the case of APS and MIL descriptors, a stable configuration is obtained after a first-order fit

while for SVD, consistent results are obtained with n > 2. SLD provides a reasonably stable configuration

in the detected triad over the entire range of n.

Fig. 14. Sensitivity of the orientation of principal directions of fabric to the order of fit; femur_1 image.
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5. Final remarks

High resolution imaging techniques, such as lCT, provide the data from which 3D measurements of the

porous microstructure of bone may be obtained. Specifically, from an arbitrarily oriented array of lineal

probes passing through a binary data volume, the basic directionally dependent quantities can be identified
which include: (i) the length of test lines intersecting the sampling volume; (ii) the sum of intercept lengths

arising from the intersection of the test lines and the phase of interest; and (iii) the number of intercept

lengths. In Section 2, the definitions of the descriptors MIL, SLD and SVD, were given in terms of these

quantities and a new measure of fabric, known as areal pore size, was introduced.

Algorithms were developed for locating the intersections of both uniformly and non-uniformly spaced

arrays of test lines with a prescribed phase of interest within a sampling domain of simple geometric shape.

Specifically, algorithms for obtaining APS, MIL, SLD and SVD measurements using the line array

approach were defined. Exhaustive and time-consuming approaches to sampling (i.e., random orientations)
were avoided in favour of a uniform spatial sampling method known as the generalized spiral points method.

Given a sufficient number of discrete measurements, an appropriate distribution function can be fit to

Fig. 15. Order of fit, n, versus tensor basis coordinates for various fabric descriptors; femur_2 image.
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the data. By incorporating dyadic products of a second-order tensor, rather than pursuing higher-order
tensor representations, a sufficient degree of accuracy can be achieved while maintaining orthotropic

symmetry.

Different fabric descriptors have been examined over the course of the analysis discussed in Section 4.

Based on this analysis, it is recommended that a range of order of fit be tried and assessed by a normalized

goodness of fit measure, such as the v2 merit function. In general, the range of order of fit for which no

significant further reduction in v2 is observed (i.e., generally for n > 1) tends to provide stable eigenvalues

and principal orientations. In the case of the trabecular bone images considered here, a second-order fit is

sufficient to produce reliable fabric information for most descriptors. In cases where significant fluctuations
in the data are observed, an increase in the sampling resolution should be applied and the resulting mea-

surements re-assessed in terms of tensor basis coordinate and principal triad angle plots. Once a suitable fit

Fig. 16. Geometric representation of different fabric descriptors; femur_2 image: (a) mean intercept length (n ¼ 2); (b) area pore size

(n ¼ 2); (c) star length distribution (n ¼ 3); (d) star volume distribution (n ¼ 4).
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to the data is chosen, composite shape plotting provides an unambiguous graphical representation of both

the material symmetry and the detected principal triad.

The results of the analyses suggest that some descriptors perform better than others in terms of detecting

material fabric. SVD appears to overestimate the anisotropy information and, as shown in the principal

plane plots in Fig. 10, the distribution of data is erratic when compared to other descriptors (e.g., SLD Fig.
11). At the same time, however, the detection of principal orientations by SVD is comparable in accuracy to

that obtained with the other fabric measures. The degree of anisotropy, assessed in terms of the different

descriptors, follows the general trend: MIL < APS < SLD < SVD. Similar observations have been re-

ported by Smit et al. (1998). In terms of performance characteristics, APS consistently generated a smooth

measurement response which may be attributed to the additional sample averaging around the main pole

direction.

Fig. 17. Sensitivity of the orientation of principal directions of fabric to the order of fit; femur_2 image.
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